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Simple method for dynamic stiffness and 
damping of floating pile groups 

R. DOBRY* and G. GAZETASt 

A simple analytical solution is developed for com- 
puting the dynamic impedances of floating rigidly- 
capped pile groups with due consideration to 
pilesoikpile interaction. The method introduces 
some sound physical approximations and considers 
the interference of cylindrical wave fields originat- 
ing along each pile shaft and spreading radially 
outward. Axial, lateral, and rocking oscillations of 
rigidly-capped pile groups are studied parametri- 
cally. Results are presented for the dynamic 
stiffness and damping of the whole group, and for 
the distribution of dynamic loads amongst the indi- 
vidual piles. The predictions of the simple method 
for vertical and rocking oscillations compare 
extremely well with rigorous numerical solutions, 
thereby offering a valuable insight into the nature 
of pile-so&pile interaction. It is demonstrated and 
explained how the dynamic efficiency may far 
exceed unity at certain resonant frequencies due to 
destructive wave interference. The proposed 
method can be readily applied by engineers already 
familiar with the use of static interaction factors in 
the design of pile groups. 

KEYWORDS: analysis; dynamics; foundations; piles; 
stiffness; waves 

Une solution analytique t&s simple est dbvelopp6e 
pour calculer les imp&lances dynamiques de 
groupes de pieux flottants $ t&s rigides dans le 
cadre de i I’interaction pieux/sol/pieux. La m&h- 
ode introduit des approximations physiques val- 
ables et prend en considbration I’interference de 
champs d’ondes cylindriques qui ont leur origine le 
long de chaque fiit de pieux et se propagent radi- 
alement vers l’ext6rieur. L’article Ctudie sous 
l’aspect parametrique les sollicitations axiales, 
laterales et oscillants de groupes de pieux P 
casques rigides. Des r&sultats sont p&e&s pour 
la rigiditC dynamique et I’amortissement du groupe 
entier et pour la distribution des charges dyna- 
miques entre les pieux individuels. Les prtiictions 
par cette methode t&s simple des oscillations verti- 
tales et basculantes supportent extr&mement bien 
la comparaison avec celles des solutions num(?r- 
iques rigoureuses, ce qui donne un aperqu valable 
de la nature de l’interaction pieux-sol-pieux. On 
dCmontre et explique comment le groupe dyna- 
mique repr6sentant I’effet utile peut dbpasser de 
beaucoup l’uniti! $ certaines frbquences de rbon- 
ante $ cause de l’interfbrence destructive des ondes. 
La m6thode propo&e peut &tre facilement appli- 
qu&e par des ingCnieurs qui connaissent dbjzi bien 
I’emploi de facteurs statiques d’interaction dans la 
construction de groupes de pieux. 

NOTATION 
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czs, cxs, CrxS 

czG, cxG, crxG 

w d/v, 
damping coefficients for axial 
(z), lateral (x), and rocking 
(rx) oscillations of a single 
pile 
damnine coefficients for axial 

f frequency of oscillation in Hz 
dimensionless frequency = (f = 4274 

amplitude of exciting force 

YyLlmic stiffness of a single 
pile 

F 

R,S, R,S, K,,: 
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(z), lateral (x), and rocking xzs, YXS, Xx,XS 
(rx) oscillations of a group of 
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d pile diameter (d = 2r,) 
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static stiffness of a single pile; 
KzS = RzS(w = 0) etc. 
dynamic complex-valued 
impedances of a single pile 
dynamic stiffness of a group 
of piles 
dynamic complex-valued 
impedances of a group of 
piles 
length of pile 
moment applied to the pile 
cap, and moment at the head 
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of each individual pile in the 
group 
pile radius 
time 
axis-to-axis distance between 
two neighbouring piles 
shear-wave velocity 
Lysmer’s analog wave 
velocity = 3.4 V$[n(l - v)] 
horizontal displacement, ver- 
tical displacement, and angle 
of rotation of individual pile 
and of pile group 
dynamic interaction factor 
for vertically (axially) oscil- 
lating piles 
dynamic interaction factor 
for horizontally (laterally) 
oscillating piles 
Poisson’s ratio and damping 
ratio of the soil 
shear wave length: 1= VJf 
circular frequency of oscilla- 
tion = 2lrf 

response parameters in verti- 
cal (axial), horizontal (lateral) 
and rotational (rocking) 
oscillation, respectively 

differentiation between single 
pile and pile group response 

INTRODUCTION 
At static working loads, the displacement of a pile 
increases if this pile is located within the deforma- 
tion field of a neighbouring pile. As a result, the 
overall displacement uG of the group of piles is 
greater than the individual displacement us which 
each pile would experience were it left alone to 
carry the average load. The static group efficiency 
uSluG is thus always below unity, and it tends to 
decline when the distance between piles is short- 
ened or when the number of piles in the group 
increases. 

Rational analyses of pile group displacements 
were pioneered by Poulos (1968, 1971), who 
introduced the concept of ‘interaction factors’ and 
showed that pile group effects can be assessed by 
superimposing the effects of only two piles. In the 
last 15 years, interaction factors for each degree 
of freedom of the pile head have been obtained by 
recourse to integral equation-based methods 
(Poulos & Mattes, 1971; Butterfield & Banerjee, 
1971; Poulos & Davis, 1980) and finite element 
formulations (Naylor & Hooper, 1975; Ottaviani, 

GAZETAS 

1975), as well as by using simple but physically 
sound approximations (e.g. Randolph & Wroth, 
1979; Scott, 1981). 

Static interaction factors do not provide useful 
information on the steady-state dynamic response 
of pile groups, except perhaps at very low fre- 
quencies of oscillation. Early numerical studies by 
Wolf and Von Arx (1978) and Nogami (1979) 
showed that the dynamic group efficiency of a 
cluster of piles exhibits a strongly oscillatory 
behaviour and may attain values well above 
unity-a result verified in subsequent studies by 
Nogami (1980 and 1983; Kaynia & Kausel(1982a 
and b); Tyson & Kausel (1983); Sheta & Novak 
(1982); El Sharnouby & Novak (1985); Novak 
(1984); Waas & Hartmann (1981 and 1984); 
Kagawa (1983); Roesset (1984); Sen, Davies & 
Banerjee (1985), and others. 

The available formulations differ from one 
another in the simplifications introduced when 
modelling this complicated boundary value 
problem. They are all of a numerical nature and 
they invariably involve discretizing each pile and 
the supporting soil; hence, application of even the 
most simplified of them may entail a substantial 
computational effort. Also, in some cases these 
methods rely on proprietary computer codes. 

In this Paper a very simple analytical solution 
to the problem of dynamic pile-soil-pile inter- 
action in uniform soil is developed, and para- 
metric results for the stiffness and damping of 
groups of floating piles are presented. 

The advantages of the proposed simple method 
for pile groups can be summarized as follows. 

(a) The procedure is simple enough to be taught 
in a course on soil dynamics, and can be 
easily understood and applied by the engi- 
neer, even without the help of a computer. 

(b) For a wide range of material parameters, pile 
separation distances, and frequencies of oscil- 
lation, the results of the method are in excel- 
lent accord with rigorous solutions. 

(c) The method can be applied to all modes of 
oscillation while retaining its simplicity. 

(6) The procedure can be extended to handle pile 
installation effects in a simplified but physi- 
cally sound way. 

However, some limitations of the proposed 
method must also be noted. First, it tends to 
overestimate the peak values of both stiffness and 
damping for pile groups embedded in (relatively) 
very stiff soil, i.e. soil whose average effective 
Young’s modulus E, is greater than about E,/300, 
where E, is the pile modulus. Fortunately, this is 
hardly a severe restriction on the range of appli- 
cability of the method: soft clays, medium clays, 
and loose sands will typically have much lower 
effective moduli than E,/300, and in these soils 
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Fig. 1. Profiles and plam of pile groups studied in this Paper 

the proposed method works very well. Moreover, 
the method might also overpredict the 
interference-related peaks of large pile groups 
(n > 16); a way of overcoming this limitation is 
suggested in this Paper. 

PROBLEM DEFINITION 
The problem studied in this Paper is that of a 

group of floating cylindrical piles embedded in a 
uniform stratum or halfspace and subjected to an 
arbitrary harmonic excitation at the top. The 
applied dynamic forces are transmitted onto each 
pile through the rigid cap. Vertical, horizontal, 
and rocking oscillations are considered. 

The soil is modelled as a linear hysteretic 
material of Young’s modulus E,, Poisson’s ratio 
v, material damping ratio 8, and shear velocity 
V,. Each pile is a solid cylinder of length L and 
diameter d, made of a linear elastic material of 
Young’s modulus Ep . (The results are also applic- 
able to hollow-cylinder shapes, to metal pipes 
filled with concrete, or even to H-piles, by appro- 

priate selection of the effective E,,.) (Randolph, 
1981; Gazetas & Dobry, 1984; Fleming, 
Weltman, Randolph & Elson, 1985.) Fig. 1 
sketches the two specific soil profiles for which 
parametric results are presented herein. However, 
the method is quite general and can be directly 
applied to any uniform profile for which the 
dynamic impedance of the single pile has been 
previously computed or measured. 

For each particular harmonic excitation of fre- 
quency w, the complex-valued dynamic imped- 
ance XG of the pile group is defined as the ratio 
of total excitation (vertical force FG; horizontal 
force HG; or rocking moment MC) over the corre- 
sponding motion of the rigid cap (vertical dis- 
placement wG; horizontal displacement uG; or 
rotation eG). For example, for vertical excitation 

.IX?~=I?~+~~,,C,~=F~/~~ I z (1) 
and similarly for XXG and XrXG, where a, = 
wd/Vs is a dimensionless frequency in the equa- 
tion. In all cases i = ,,I’- 1. The terms RaG and 
C,G (where a = z, x, or rx) are interpreted as 
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equivalent ‘spring’ and ‘dashpot’ coefftcients at 
the head of the pile group; they are both func- 
tions of the circular frequency of excitation 
w = 2rrj In this Paper KaG and C,G_are contrast- 
ed to the corresponding values of KaS and C,’ of 
the single pile, evaluated at the same frequency w. 

FUNDAMENTAL ASSUMPTIONS OF THE 
METHOD 

Poulos’ (1968, 1971) superposition procedure, 
originally developed for statically loaded pile 
groups, is also valid for the dynamic problem- 
an assumption employed frequently in other for- 
mulations. Kaynia & Kausel (1982a and b); 
Sanchez-Salinero (1983); and Roesset (1984) have 
demonstrated that the results of this approx- 
imation are, indeed, in very good agreement with 
more rigorous dynamic solutions. Therefore, the 
response of the pile group can be obtained from 
interaction factors derived from the study of only 
two piles at a time. In essence, it is assumed that 
the presence of the rest of the piles does not 
appreciably affect the interplay between the two 
piles being considered. This means that, when 
computing the influence of pile p on pile q the 
intermediate piles are considered to be 
transparent-an assumption not far from reality 
in view of the fact that the wavelengths (1) of 
practical interest 

L > 6d (2) 

are too large for the waves propagating in the soil 
to ‘see’ the cylindrical pile. However, when the 
number of piles in a group is very large and the 
pile spacing relatively short, the interaction 
between two distant piles in the group will 
unavoidably be reduced due to ‘scattering’ of 
waves and the corresponding ‘shadows’ formed 
by the piles in-between. 

To derive the influence of the motion of pile p 
(active) on pile q (passive) we can replace pile q 
by its axis, neglecting its dimensions. Sanchez- 
Salinero (1983) and Roesset (1984) have shown 
that this is a realistic approximation, except 
perhaps at very high frequencies and close pile 
spacings. Other researchers have also taken 
advantage of this assumption (e.g. Nogami, 1979; 
Sheta & Novak, 1982). Equation (2) may again 
provide the clue to the success of this assumption; 
the deformations which waves emanating from 
pile p induce at each point along the contour of 
pile q are all nearly in-phase, due to the relatively 
small dimensions of the pile (d < J/6). Therefore, 
the average deformation of passive pile q at a 
given depth is approximately equal to the defor- 
mation of the middle point, i.e. at the axis of this 
pile. 

It is worth drawing an analogy with scattering 
of sound waves by a rigid cylinder of diameter d: 
for wavelengths 1 greater than the perimeter nd, 
the net pressure acting on the cylinder (per unit 
length) has only a negligible phase lag behind the 
pressure which the incident wave would induce at 
the centre of the cylinder, if the latter were not 
there (Morse & Ingard, 1968). In our case A 2 
2nd and hence the approximation is valid with a 
good degree of accuracy. 

At the frequency range of interest, as the active 
pile p undergoes oscillations in, say, the vertical 
direction, cylindrical waves are assumed to 
emanate from the pile perimeter along the pile 
length and to propagate radially outward in the 
horizontal direction. This assumption is remi- 
niscent of the shearing of concentric cylinders 
around statically loaded piles and pile groups 
assumed by Randolph & Wroth (1978 and 1979) 
and is also somewhat similar to the ‘Winkler’ 
assumption introduced by Novak (1974) and 
extensively used in dynamic analyses of pile 
groups. However, the simple method presented 
here goes a step further; the cylindrical waves are 
assumed to emanate simultaneously from all 
points along the pile length and hence, for a 
homogeneous deposit, to spread out in-phase and 
form a cylindrical wavefront having a common 
axis with that of the generating pile (Fig. 2(a and 
b)). For an observer at the ground surface, the 
propagation and interference of these cylindrical 
wavefronts would appear as Fig. 2(a). (This is 
reminiscent of the water waves that would be 
created by a very light, rigid structure floating on 
a pond, composed of a horizontal platform on 
columns, and excited by steady-state vertical 
vibration.) 

The variation of wave amplitude with depth 
along the cylindrical front arriving to the passive 
pile is assumed to be analogous with the ampli- 
tude variation of the active single pile, as depicted 
in Fig. 2(b). For steady-state harmonic oscillation, 
the assumption of waves originating simulta- 
neously along the whole pile length seems to be 
quite realistic in many cases of practical interest. 
Specifically 

(a) for axially loaded piles in the frequency range 
covered in this Paper, waves propagate down 
the pile at a nearly infinite apparent phase 
velocity, while the motion diminishes almost 
exponentially with depth; in other words, all 
points along the pile shaft move in phase at 
the excitation frequency. (The apparent veloc- 
ity in the pile would be essentially infinite if 
the surrounding soil provided no damping 
and the dimensionless frequency factor cod/K 
were less than a cut-off frequency factor, 
which is always beyond the frequency range 
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(b) 

Fig. 2. (a) analogy between the- cyliodrical wave assumption for group of piles in 
soil aad cylindrical water waves; (b) distribution of displacement amplitudes along 
the shaft of an oscillating (active) pile and of a neighbouring (passive) pile are 
assumed to be of the same shape; (c) pile-head deformation and reactions during 
rocking; (d) assumed apparent velocities of waves emanating from a laterally oscil- 

of interest 
1985.) 

lating pile 

here (i.e. greater than l).) (Wolf, 

(b) for lateral loading, waves propagate down the 
pile at a finite phase velocity (Wolf, 1985) so 
that ‘simultaneous arrival’ can be tried only as 
a first approximation. 

In the interest of simplicity, the basic solution 
for cylindrical waves is simplified by considering 
the large-argument asymptotic approximation 
(Morse & Ingard, 1968). Here, one works with 
simple exponentials instead of Hankel functions; 
this will allow solutions for a small number of 
piles to be achieved with the help of only a pocket 
calculator. It has been found in sensitivity studies 
that the improvement resulting from the use of 
the exact cylindrical wave solution is negligibly 
small and would hardly rectify any potential limi- 
tations of the method. 

In addition to these fundamental assumptions, 
some other assumptions are made when studying 
the horizontal and rocking modes of vibration. 

DEVELOPMENT OF DYNAMIC INTERACTION 
FUNCTIONS 
Axial (vertical) vibration 

For a homogeneous deposit (as in Fig. l(a)), 
only two pieces of information are needed as 
input to the method 

(a) the S-wave velocity V, and the hysteretic 
damping ratio fl of the soil. 

(b) the complex-valued dynamic impedance 
,X,‘(w) of the single pile at the particular fre- 
quency (or frequencies) of interest. 

The axial rigidity and the slenderness of the 
pile enter the analysis only through their effect on 
the impedance of the single pile. Also, the 
complex-valued dynamic impedance for a single 
pile is defined as 

X,‘(w) = Kzs(w) + ia, C,‘(w) = FS/wS (3) 

and can be obtained by any of several available 
numerical methods (see Sheta & Novak, 1982, for 
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a list of related publications) or, potentially, from 
full-scale dynamic pile load tests in the field. 

Consider two identical piles, p and q, separated 
by a distance S between axes. The effect of the 
vibration of pile p on the response of pile q can 
be conveniently expressed through the dynamic 
interaction factor a,, which is a function of fre- 
quency 

a, = a,(w) = wqplwqq 

This simple expression is all that is needed to 
compute the vertical response of any group of 
piles, once the single pile impedance Xps is avail- 
able. 

additional disnlacement of 
pile q caused by pile p 

= displacement of pile q under 
own dynamic load 

(4) 

The dynamic displacement field around a 
vibrating pile p is described by the following 
asymptotic cylindrical wave expression (see 
Morse & Ingard, 1968) 

w(r) z A - exp (-pm/V,) exp 
;r [- ( 91 rw t - 7 

(5) 

where r = horizontal distance from the axis of 
pile p and A = A(z) = an amplitude constant. The 
other three factors in equation (5) imply that 

(a) the amplitude of motion decays in proportion 
to r-II2 times the hysteretic damping depen- 
dent factor exp (-/km/V,) 

(b) the phase lag of the motion at a particular 
location within the soil is only a function of 
the radial distance r. 

At the axis of the neighbouring pile q, located 
at a distance r = S, equation (5) provides 

W qp E w(r = S) 

= A i exp ( -/?wS) exp [iw(t - S/V,)] 
JS 

(6) 

It is assumed that this wqp is also approximately 
the same in the periphery of pile q. To obtain the 
displacement wqq of pile q under its own dynamic 
load, equation (5) is used once more to provide 
the approximate expression 

wqq v A i exp (iwt) 
Jr0 

in which r,, = d/2 is the radius of the pile. Equa- 
tion (7) recognizes that there is no time lag 
between the axis and perimeter of the pile vibrat- 
ing under its own load. 

By dividing equation (5) (for r = S) by equation 
(7) we obtain the approximate expression for the 
interaction function 

- I,2 

exp (-@S/V,) exp (-ioS/K) (8) 

Rocking 
Rocking of piles fixed to a rigid cap induces 

both axial and rotational deformations (Fig. 2(c)). 
Based on the evidence available from the static 
solutions (Poulos & Davis, 1980) and on indirect 
evidence for the dynamic problem, it is assumed 
that no interaction takes place due to the rota- 
tional deformation of each pile. Such deformation 
(under zero lateral head displacement) is felt only 
a few diameters down from the pile head, and 
produces a rapidly decaying stress field around 
the pile. Hence the neighbouring piles fall outside 
each other’s zone of influence for this effect. 
Therefore, although both axial and rotational 
deformations of pile q are considered in pile q 
due to its own load, only the influence of motions 
coming from pile p on the axial deformations of 
pile q is considered. 

Lateral vibration 
For laterally oscillating piles the interaction 

factor ah depends, for a given frequency w, not 
only on the distance S but also on the angle 6 
between the line of the two piles and the direction 
of the horizontal applied force. However, it is suf- 
ficient to compute a,, only for 0” and 90” angles, 
and then use 

ah(P) N ah(Oo) cos2 8 + a,(90”) sin’ 0 (9) 

to obtain very good estimates for any arbitrary 
angle 0 (Poulos, 1971; Kaynia & Kausel, 1982a 
and b; Sanchez-Salinero, 1983). Approximate esti- 
mates of a,,(P) and ah(90”) are obtained with the 
help of Fig. 2(d). Based on evidence provided by 
Gazetas & Dobry (1984) the 90”-pile q is affected 
essentially only by S-waves which emanate from 
active pile p and which have a phase velocity V,. 
However, the 0”-pile q is affected by compression- 
extension waves coming from p and propagating 
with an apparent phase velocity which is approx- 
imately equal to the so-called Lysmer’s analog 
velocity, V,, = 3.4 VJ[lr(l - v)] (see Dobry & 
Gazetas, 1986). Thus as a first approximation 

and 

a,(90”) 2: a, (10) 

S 0 
-l/Z 

ah(V) = ah0 = r, exp ( - PwSlK.) 

x exp ( - id/V,,) (11) 
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FIRST APPLICATION: AXIAL IMPEDANCE OF 
RIGIDLY-CAPPED PILE GROUPS 

Referring to Fig. l(b), the following examples of 
application of the method are offered. 

Two piles 
Let F exp (iwt) be the vertical excitation load 

applied to each pile. The displacements of the two 
piles, wi exp (iwt) and w2 exp (iwt) are identical, 
and can be obtained by superposition 

wi = wii + wiz = wii(l + a,) = 5 (1 + a,) 
z 

(12) 

where a, = a,(S) is the interaction factor for verti- 
cal vibration and Xzs is the dynamic impedance 
of the single pile corresponding to the frequency 
w. By definition, the impedance of the group is 

xo=?!=X z 
Wl 1 + a, (13) 

Hence the impedance of the 2 x 1 group is 
easily computed if, for each particular frequency, 
the impedance of the single pile is known and the 
interaction factor is calculated from equation (8). 

Two by two pile group 
Due to symmetry, the four piles share equally 

the applied load and experience the same 
dynamic vertical displacement. Let F exp (iwt) 
again be the individual pile load and wi exp (iwt) 
its displacement, including the group action. By 
superposition 

w1 = WI1 + 2w,, + w14 

= ~~(1 + 2x1, + xi4) 

= -$ [l + Za,(S) + a,(SJ2)] (14) 
I 

from which the group impedance takes the form 

4F 
&-GC--Z 

4z^,s 
I wi 1 + 2a,(S) + a&/2) 

(15) 

In the above expressions S,/2 is the distance 
between the diagonal piles and a&/2) is the cor- 
responding interaction factor (given by equation 
(8) after replacing S by S,/2). (A numerical 
example illustrating the use of equation (15) is 
given in Appendix 1.) 

Three by three pile group 
The rigidity of the pile cap produces the same 

vertical displacements of all piles, but the forces 

transmitted by each pile differ. Let F, be the 
amplitude of the load carried by the corner piles, 
F, that of the centre pile, and F, = F, that of the 
four remaining edge piles (see Fig. l(b)). The dis- 
placement of the centre pile 2 is 

wz = wzz + 4w,, + 4w,, 

= 3 + 3 a&/Z) + 3 a,(S) 
x* xz 

(16) 

Similar expressions can be written for wi and 
wj to obtain a system of three algebraic equations 
from which F,, F, and F, are derived as a func- 
tion of the common displacement w1 = w2 = 
wj z wG. Finally, making use of the equilibrium 
equation 

F, + 4F, + 4F, = FG (17) 

where FG = the amplitude of the total force 
applied onto the pile group cap, is all that is 
needed to obtain wG, and thereby the individual 
pile forces. The group impedance XzG equals 
FG/wG. 

SECOND APPLICATION: ROCKING 
IMPEDANCE 

Only the 2 x 2 group is studied. Rotation of 
the cap by an angle eG is resisted by two pairs of 
axial forces, F, exp (iwt) and F, exp (i[wt + rr]), 
and by moments AM, = AM, = AM, = AM, = 
X,,VG exp (iwt). 

The axial forces and axial displacement are 
related as follows 

Wl = w11+ w12 + w13 + w14 

= wllU + al2 + al3 + 4.4 

= $j Cl - a,(S) + a,(S) - a,(S$)l 

= 3 Cl - ~“(SJ2)l 

i.e. the effects of the two closest piles, oscillating 
at the same displacement amplitude but with 
opposite phase, cancel each other out and only 
the effect of the diagonally located piles remain. 

Considering moment equilibrium leads to 

MG = 4AM + Z(Fixi) (19) 

from which the group rocking impedance MG/BG 
is obtained 

x G = 4xx,,S + xzs s 
1 

TX 1 - a&/2) (20) 
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Fig. 3. Vertical dynamic stiffness and damping group 
factors as a function of frequency: comparison of pro- 
posed simple method with rigorous solution of Kaynia & 
Kausel (1982) for a group of 2 x 2 fixed-bead piles in a 
homogeneous halfspace, EJE, = 1000, L/d = 15 

Following a similar procedure one can derive 
the dynamic rocking impedances of the larger pile 
groups shown in Fig. l(b). 

THIRD APPLICATION: LATERAL IMPEDANCE 
The method is applied only to the 2 x 2 fixed- 

head pile group of Fig. l(b) undergoing a hori- 
zontal oscillation of amplitude u exp (iwt) 
without rotation. Noticing that the interaction 
factor between the diagonal piles can be 

expressed, according to equation (9), as 

G(45”) = f(% + %J) (21) 

and denoting with Y,,’ the lateral impedance of 
the single pile, the following relation between the 
common pile horizontal displacement u and the 
common force per pile P, can be obtained 

uo - - Ull + UlZ + 43 + u14 

= UllU + al2 + al3 + ~1 

= 3 { 1 + cLh0(S) + a,(S) + f 

x CWJ2) + %cl(~Jm (22) 
and hence the dynamic impedance of the 2 x 2 
pile group is 

4ptl _f,G=- 
UG 

_ 
1 + a,(S) + O+#J2) + ClJS) + O%,,(SJ2) 

(23) 

In similar fashion, although computationally 
more involved, one can derive the lateral imped- 
ances of larger pile groups. 

PARAMETRIC RESULTS AND COMPARISONS 
Dynamic response results for the pile groups of 

Fig. 1 are presented in Figs 3-13, where they are 
compared with the rigorous solutions of Kaynia 
8c Kausel(1982a and b) and the approximate sol- 
utions of Nogami (1983). 

Axial (vertical) response 
Figures 3-8 study the vertical (axial) oscil- 

lations of the 2 x 1, 2 x 2, 3 x 3, and 4 x 4 pile 
groups in a homogeneous viscoelastic halfspace 
or stratum. Figs 3-5 in particular, plot as a func- 
tion of the dimensionless frequency factor wd/K 
the dynamic stiffness and damping group factors; 
these are defined as the ratios of the dynamic 
stiffness RZG or of the dashpot coefficient CZG, to 
the sum of the static stiffnesses of the individual 
single piles. With n identical piles in the group, 
this sum simply equals nKzS. At zero frequency 
the foregoing stiffness group factor reduces to the 
familiar static group elllciency factor (Fleming et 
al., 1985). If there had been no pile-tepile inter- 
action the group factor curves would have coin- 
cided with those of the single pile (dashed lines in 
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Fig. 3). Fig. 6 plots the distribution of forces 
among the piles of a 3 x 3 group as a function of 
frequency. For vertical response, the wavelength 1 
equals 2nVJw and therefore the frequency factor 
wdJVs = 24(1/d). Figs 7 and 8 correspond to a 
pile group in a soil stratum over bedrock. 

Several important trends can be seen from Figs 
3-8. 

For very close spacings (S/d = 2) the stiffness 
and damping group factors exhibit a smooth 
variation with frequency, with the pile group 
behaving very much like an isolated embedded 
foundation (Gazetas, Dobry & Tassoulas, 1985). 
Indeed, while the damping coefficients remain 
essentially constant in the frequency range 
studied, the dynamic group stiffnesses decrease 
steadily with increasing frequency, achieving 
negative values at higher frequency factors. Such 
a behaviour is reminiscent of the simple l-degree 
of freedom oscillator having mass m, spring con- 
stant K and dashpot coefficient C, the effective 
dynamic stiffness of which, K = K - ma=, 
decreases parabolically with frequency while C is 

constant. To explain the causes of the similarity, 
refer to equation (2). At such close spacings 
(S = 24 the relevant wavelengths II are greater 
than S by a factor of at least 3. Hence the soil 
mass between piles tends to vibrate in phase with 
the piles and so the pile groupsoil system 
responds as a block. 

Groups with more amply spaced piles (S/d = 5 
or 10) exhibit a more complicated behaviour with 
the stiffness and damping curves having peaks 
and valleys which depend on the size of the group 
and the spacing of the piles. 

Initially, at low enough frequencies, the group 
stiffnesses invariably decrease with frequency, as 
the relevant wavelengths are again large enough 
compared to pile spacing (1 > 3s) and the soil 
between the piles moves in phase with the piles 
(response as a block). However, beyond a certain 
limiting value of the frequency, wave interference 
phenomena start dominating the response of the 
soil-pile group system. This limiting frequency is 
essentially independent of group size but 
decreases with increasing pile spacing; it is 
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method with rigorous solution of Kaynia 81 Kausel (1982) for a group of 4 x 4 fixed-bead piles in a homogeneous 
halfspace, E,/E, = 1000, L/d = 15 

roughly equal to wd/K = 0.40 for S/d = 5, and to 
cod/K = 0.15 for S/d = 10. 

When the frequency exceeds that limiting 
value, pile-t-pile interaction leads to stiffness 
group factors that may far exceed both unity and 
the single-pile factor. The predominant peaks 
occur in each case at the frequency at which the 
corresponding wavelength 1 is about two times 
the pile spacing S. The explanation is straightfor- 
ward: when S = I/2/2 or, in general, S = I(* + n) 
with n = 0, 1, 2 . . . . cylindrical waves originating 
with a certain phase from a pile p arrive at the 
neighbouring pile q in exactly opposite phase, 
thereby inducing a displacement wqP which is 
negative compared to the displacement wqq due 
to this pile’s own load. Hence, the dynamic inter- 
action factor a, is negative (equation 4) and a 
larger force must be applied onto pile q to enforce 
a certain displacement amplitude. 

The distribution of forces among the piles of 
the 3 x 3 group, shown in Fig. 6, is very sensitive 
to variations in frequency and pile spacing. For 

static and low-frequency excitation the corner 
piles carry the largest portion of the applied 
load-their force amplitude IF, 1 varies from 
about 1.1 to 1.5 times the average applied force 
as the spacing decreases from 10 to 2 diameters. 
By contrast, at the same low frequencies the 
central pile carries only 0.7 to 0.15 times the 
average load, respectively. However, this picture 
changes at higher frequencies as cylindrical waves 
emanating from other piles affect the response, 
producing undulations in the individual pile-load 
curves. The central pile is particularly sensitive to 
such wave interferences, since the waves emitted 
by the surrounding eight piles hit this pile with 
similar phases, due to the identical distances, S 
and SJ2, of the four edge and four corner piles 
from the centre pile. Because of this, their effects 
(favourable or unfavourable) add up (constructive 
or destructive interference). At wavelengths I in 
the range 

2S6152J2S (24) 
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Fig. 6. Variation of the distribution of axial force amplitudes carried by the corner and 
centre piles in a 3 x 3 fixed-head pile group, as a function of vibration frequency and pile 
spacing; EJE, = 1000, L/d = 15, vertical loading: comparison of proposed simple method 
with rigorous solution of Kaynia & Kausel(l982) 

these waves tend to lift the centre pile upward 
when its own load pushes downward; as a conse- 
quence, only by increasing its share of the total 
applied load can this pile be forced to follow the 
uniform displacement of the rigid cap. It can be 
seen in Fig. 6 that in the frequency ranges corre- 
sponding to equation (24), 1 F, 1 of the centre pile 
may rise to nearly 2 times the average load 
(regardless of pile spacing) while the share of the 

corner piles drops down to nearly 60% of the 
average load-a rather dramatic reversal of the 
static situation. 

In Figs 3-8 the predictions of the proposed 
simple analytical method compare extremely well 
with the rigorous numerical solutions; qualitat- 
ively as well as quantitatively. In particular, even 
detailed trends arising from pile-soil-pile inter- 
action were successfully predicted. The fact that 
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such a greatly simplified solution can provide 
practically accurate results for the complicated 
boundary-value problem at hand leads to the 
conclusion that the key physical phenomenon 
involved is indeed the interference (constructive 
or destructive) of cylindrical shear waves originat- 
ing along the shaft of each pile. 

It is fair, however, to draw attention to a 
potential limitation of the proposed method: it 
tends to overpredict the resonant peaks of large 
pile groups (e.g. the 4 x 4 group, see Fig. 5). This 
probably stems from the fact that the interaction 
between two distant piles in a large group will in 
reality be reduced due to scattering of waves and 
shadow-forming by the in-between piles- 
phenomena that are reproduced in the simplified 
model. In its present form the model assumes 
transparency of the intermediate piles. A simple 
improvement for such large pile groups could in 
principle be effected by increasing the soil 
damping ratio b to account for the apparent 
damping due to multiple scattering (Varadan, 
Varadan & Pao, 1978). 

Rocking and lateral response 
For rocking around the x-axis of the 2 x 2 and 

3 x 3 pile groups (sketched in Fig. l(b)) Figs 9 
and 10 plot as functions of wdJV3 and of S/d, the 
dynamic stiffness and damping, RrxG and CrxG, 
divided by xi= i, &* I&‘). This sum represents 
the contribution of the single pile axial static 
stiffnesses to the rocking static stiffness of the 
group (see equation (19) with AM = 0 and F, = 
XZsxi). The trends observed in these figures can 
be explained by recourse to arguments similar to 
those advanced for vertical oscillations. 

For the 2 x 2 pile group in particular, shown 
in Fig. 9, the fairly smooth variation of the group 
stiffness with frequency can be seen. This is due to 
very small interaction taking place as a result of 
the rotational deformation at the head of each 
pile (in fact, the Authors’ simple method neglects 
such interaction altogether) and to the two pairs 
of piles on opposite sides of the x-axis oscillating 
axially 180” out of phase. Thus, they generate 
(cylindrical) wave fields that tend to counter- 
balance the interplay of the two in-phase oscil- 
lating piles. As a consequence, the peaks for jZrxG 
in Fig. 9, corresponding to maximum wave inter- 
ference, occur when the distance between the two 
diagonal piles S,/2 equals a whole wavelength 1. 
This condition leads to a frequency factor 

ad/K = x J2(s/d)- 1 (25) 

which for S/d = 10, 5, and 2, yields approximately 
wdJVs = 0.45, 0.90, and 2.22, respectively-values 
consistent with the results in Fig. 9. 

Therefore, the performance of the simple 
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Fig. 9. Rocking dynamic stiffness and damping group 
factors as a function of frequency: comparison of simple 
method with rigorous solution of Kaynia & Kausel 
(1982), for a group of 2 x 2 fixed-bead piles in a homo- 
geneous halfspace, E&E, = 1000, L/d = 15 

method for rocking of rigidly-capped pile groups 
is also excellent, especially for pile spacings which 
are not too close. 

The dynamic stiffness and damping group 
factors for fixed-head horizontal oscillation 
(without rotation) of the 2 x 2 and 3 x 3 pile 
groups are portrayed in Figs 11 and 12. The nor- 
malization is done by dividing by the sum of the 
static lateral stiffnesses, nKXS of the individual 
single piles. 

Despite its overall satisfactory performance in 
the horizontal case, the simple method over- 
predicts the heights of the peaks for both stiffness 
and damping curves. This discrepancy, which 
understandably increases as the number of piles 
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in the group grows, is probably due to the simpli- 
fied wave field assumed in Fig. 2(d) and to the 
finite apparent phase velocity with which flexural 
waves propagate down the laterally loaded pile. 
This renders the assumption of simultaneous 
emission of the waves from the various points 
along the pile shaft somewhat inaccurate for hori- 
zontal fixed-head pile vibration. Hence, simulta- 
neous arrival of these waves at the shaft of a 
neighbouring pile does not reflect reality in an 
accurate way. As a result, the arriving waves have 
(slightly) different phases along this pile, and this 

modifies the wave interference phenomena con- 
trolling the pile group response in ways not fully 
accounted for by the simple model. 

Nonetheless, even in this case the simple 
method proposed predicts the distribution of 
shear forces at the head of each pile in the group 
with remarkable accuracy for all frequencies, pile 
spacings and group sizes considered (see Fig. 13). 
(Although Fig. 13 presents only some of the com- 
parisons of lateral force distributions obtained by 
the Authors, the excellent agreement shown is 
typical of all results.) The trends in Fig. 13 are 
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qualitatively similar to those of Fig. 6 for axial 
vibration. 

CONCLUSION 
A very simple method which captures the 

essential physics of the problem has been devel- 
oped for estimating the dynamic impedance func- 
tions of pile groups. The approach leads to simple 
analytical expressions, and it can be easily under- 
stood and applied by engineers familiar with 
using static interaction factors in the design of 

pile groups. The method requires as input the 
related dynamic impedance of the single pile and 
three soil parameters: V, , v and /I. 

For a wide range of pile separation distances, 
frequencies of oscillation, and number of piles in 
the group, the results of the method are in excel- 
lent accord with those of far more sophisticated 
solutions. Potential limitations of the procedure 
are also pointed out and ways of overcoming 
them are suggested. 

Even though the method has been developed 
and applied in this Paper only to the case of a 
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homogeneous linear soil layer or halfspace, it 
could in principle be extended to handle in 
approximate but physically sound ways, both 
inhomogeneous deposits and pile installation 
effects. It is anticipated that such material heter- 
ogeneities and nonlinearities would tend to 
reduce the substantial interference peaks noticed 
in the stiffness and damping curves of pile groups 
embedded in homogeneous, linear soil deposits. 

APPENDIX 1: NUMERICAL EXAMPLE FOR 2 x 2 
PILE GROUP 

This Appendix presents a numerical example of cal- 
culation of the vertical impedance X.o of a 2 x 2 pile 
group, by using the proposed simple analytical solution. 

Given the 2 x 2 pile group described by Figs 1 and 3, 
with L/d = 15, Es/E. = 1000, S/d = 10 and B = 0.05, 
being excited by harmonic frequency a, = cod/V, = 0.3. 

Find the vertical stiffness (KzG) and dampmg (CzG) 
coefficients of the 2 x 2 pile group. Compare with the 
results presented in Fig. 3. 

Similarly to equation (1) the vertical impedance of a 
single pile is 

XG=KRSiia Cs I z 0 I (26) 

From Fig. 3, for a, = cod/V, = 0.3, the single pile values 
are 

4&S/4K,S = ~,SjK,S = 1.16 (27) 

4Czs/4KzS = CzS/KzS = 3.0 (28) 

i.e. 

Xzs = 1,16K,s + (3Kzs)(0.3)i (29) 

X,’ = (1.16 + 0.9i)K,s (30) 

where K,’ = static stiffness of single pile. 
The vertical impedance of the 2 x 2 group is given by 

equation (15) 

XG’ 
4x,s 

I 
1 + 2a,(S) + a,(SJ2) 

(31) 

where a&9) is given by equation (8) 

exp (-)!?wS/V,) exp (- ioS/VJ (32) 

For this case, S/r, = 2S/d = 20, and 

OS/V, = @d/V&?/d) = (10x0.3) = 3. (33) 
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‘r Pile 2 (centre) 

Fig. 13. Variation of the distribution of shear force amplitudes carried by the corner 
and centre piles in a 3 x 3 fixed-head pile group, as a function of lateral vibration 
freqwncy and pile spacing, EP/E, 3: 1000, L/d = 15, vertical loading: comparison of 
proposed simple method with ngoroos solution of Kayaia & Kausel(l982) 

Therefore Xzs (equation (30)) into equation (15) 

a,(S) = (20)-‘I2 exp [( -0.05)(3)] exp (- 3i) 

= 0.1925 exp (- 3i) 

= 0.1925 (cos 3 - i sin 3) 

= - 0.1906 - 0.02721’ (34) 

X0= 
4(1.16 + 0.9i)KzS 

I 1 2[ 0.1906 
+ - - 

0.027211 (36) 

+ [ -0.0689 + 0.135611 

X‘O L= 1.16 + 0.9i 
4K; 0.5499 + 0.08 12i (37) 

Similarly for a,(SJ2) Therefore, coming back to the definition of XzG in 

a&/2) = (2OJ2)-“’ equation (1) 

x exp [(-0.05X3,/2)] exp (- 3J2i) 

= -0.0689 + 0.13561 (35) 
(38) 

Replacing these expressions for a,(S), a,(SJ2) and 
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which would provide an additional data point for 
S/d = 10 and wd/< = 0.3 in both plots of Fig. 3. 

Novak, M. (1984). Evaluation of dynamic experiments 
on a pile group. J. Geotech. Engng Div. Am. Sot. Cio. 
Engrs 110,738-756. 
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